Reducing Design Cycle Time and Cost through Process Resequencing

James L. Rogers
NASA Langley Research Center
Hampton, VA USA

11th International Conference on Engineering Design Tampere, Finland August 19-21, 1997

Definition of Multidisciplinary Design Optimization

Multidisciplinary Design Optimization (MDO) is a methodology for the design of complex engineering systems and subsystems that coherently exploits the synergism of mutually interacting disciplines.

NASA Langley Research Center Multidisciplinary Optimization Branch

Langley MDO Program

MDO Conceptual Elements

Information Science
& Technology

Design-Oriented MD Analysis

MD Optimization

Product Data Models

Data & S/W Standards

Data Management,
Storage & Visualization

S/W Engineering Practices

Human Interface Mathematical Modeling

Cost vs. Accuracy
Trade-off

Smart Reanalysis

Approximations

Sensitivity Analysis Discipline Optimization

Decomposition

Design Space Search

Optimization Procedures

The Problem

In today's competitive environment, companies are under enormous pressure to reduce the time and cost of their design cycle.

Conceptual Design Process Flow

Design Manager's Aid for Intelligent Decomposition (DeMAID)

1989 DeMAID first available to the public

Knowledge-based system

Display with design structure matrix

1996 Genetic algorithm added for sequencing

A Process

Output = Process (Input1, . . . , Inputn)
Time and cost associated with each process

Design Structure Matrix

Design Structure Matrix - Circuit(Iterative Subcycle)

Techniques for Reducing Design Cycle Time and Cost

- Hierarchical decomposition
- •Parallel processing vs. iteration reduction
- Changes in the design cycle
- Optimum sequencing with a genetic algorithm

Hierarchical Decomposition

Trade-Off in Sequencing

Increase parallel processing or reduce iterations Process 12 appears in 4 iterative loops

Parallel processes

Trade-Off in Sequencing

Increase parallel processing or reduce iterations Process 12 appears in only 1 iterative loop

Effects of a Design Cycle Change

Computing Design Cycle Time and Cost with a Genetic Algorithm

Time = 10
$$Cost = 20$$

Time = 30 $Cost = 15$
Time = 40 $Cost = 40$
Time = 20 $Cost = 35$

Number of iterations related to coupling strength The stronger the coupling the more iterations nominal = 5

Time =
$$(10 + 30 + 40 + 20) * 5 = 500$$

Cost = $(20 + 15 + 40 + 35) * 5 = 550$

Design Cycle Time and Cost

Process	Time	Cost
DYNMODL	30	30
STDMOCH	40	20
STRMODL	10	50
HANDQUL	10	50
STRMODE	10	50
GEOMDEV	50	10
AROSRVO	40	20
STRDYNA	50	10
CSVSANL	20	40
FAEROCH	20	40
INITDAT	40	20
RVSEDAT	30	30
MISPERF	30	30
VEHPERF	20	40
RAEROCH	30	30
AEROANL	20	40
PRESDEF	30	30
STRANAL	40	20
STRCTWT	50	10
WIANAL	40	20
AEROMDL	20	40
FINLDAT	20	40

Time - 21,340

Cost - 19,640

Design Cycle Time and Cost Reduced by GA

Process	Time	Cost
RVSEDAT	30	30
INITDAT	40	20
GEOMDEV	50	10
STRMODL	10	50
AEROMDL	20	40
AEROANL	20	40
PRESDEF	30	30
STRANAL	40	20
STRCTWT	50	10
WIANAL	40	20
STRMODE	10	50
RAEROCH	30	30
FAEROCH	20	40
STRDYNA	50	10
STDMOCH	40	20
DYNMODL	30	30
CSVSANL	20	40
HANDQUL	10	50
AROSRVO	40	20
VEHPERF	20	40
MISPERF	30	30
FINLDAT	20	40

Time 21,340 to 3,800

Cost 19,640 to 3,220

Future Plans

- •Add constraints to the genetic algorithm.
- •Modify the genetic algorithm to take parallel processing into account.
- •Develop a web-based multidisciplinary framework monitoring and control system built around DeMAID/GA.

Summary

Several techniques for reducing design cycle time and cost by using the design structure matrix to aid in understanding and improving the process flow have been presented.

DeMAID/GA, including source and documentation, is available at <u>no charge</u>

http://fmad-www.larc.nasa.gov/mdob/users/rogers/